Übertragung eines Vorgehensmodells zur Integration KI von der Industrie auf Umweltinformationssysteme

Dr. Désirée Hilbring Fraunhofer IOSB

desiree.hilbring@iosb.fraunhofer.de

KIU-2020: 1. Workshop "Künstliche Intelligenz in der Umweltinformatik" im Rahmen der 50. Jahrestagung der Gesellschaft für Informatik

2. Oktober 2020 (digital)

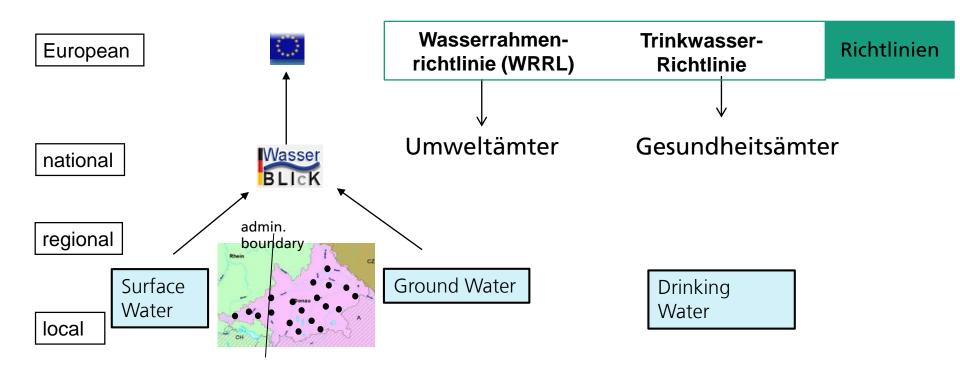
Motivation

Einsatz von KI in Umweltinformationssystemen

Interesse an Algorithmen vorhanden, aber noch nicht weit verbreitet

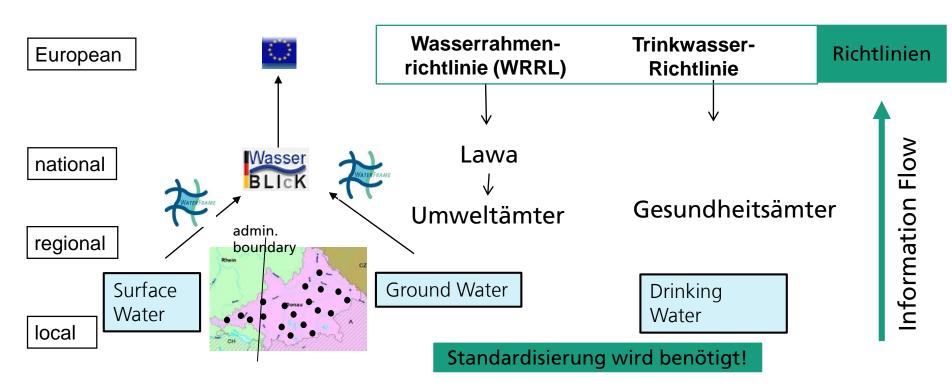
Eine offene Frage ist

 Die Integration von KI-Verfahren in bestehende Umwelt-Informationssysteme


Ziel des Vortrags

- Dieser Vortrag diskutiert die Möglichkeit wie KI-Algorithmen in seit Jahrzehnten bestehende behördliche UIS integriert werden könnten
- Basis ist ein Vorgehensmodell, welches für die Integration von KI in die Produktion entwickelt wurde

Einleitung


- Behörden haben in den letzten Jahrzehnten
 Fachinformationssysteme und Umweltdatenbanken aufgebaut
- Primäres Ziel: die Erfüllung gesetzlicher Pflichten im Umweltbereich
- Problematik: Die Aufgaben sind behördenübergreifend

Typische behördenübergreifende Aufgaben im Wasser-Bereich

Typische behördenübergreifende Aufgaben im Wasser-Bereich

- Komplexe Strukturen
- Fachalgorithmen werden in Gremien abgestimmt (z.B. Lawa)
- Es existieren bereits Entwicklungskooperationen (länderübergreifende Fachinformationssysteme (BaWü, By, Th) auf Basis von WaterFrame®)

Aufgabenstellung

- Wie können KI-Verfahren in dieses komplexe System integriert werden?
- Fiktives Beispiel: Integration von Nitratprognosen in den Workflow
- Für die Integration ist ein abgestimmtes Vorgehensmodell notwendig
- Untersucht wurde die potentielle Nutzung des Vorgehensmodells von ML4P

ML4P – Machine Learning For Production

Bietet ein toolgestütztes Vorgehensmodell für die Integration von maschinellem Lernen in der Produktion

- Strukturierte Herangehensweise für den systematischen Einsatz von ML in Produktionsprozessen
- Klare Rollenverteilung im Projekt in z.B.: Prozessexperte, ML-Experte, ...
- Planbarer Projektablauf durch klar definierte Phasen im Projekt und langfristiger Betrieb
- Durchgänge Artefakte hinsichtlich Dokumenten und Datenstrukturen
- ML-Pipeline-Diagramm

Mapping des ML4P Modells auf behördliche UIS

- Abbildung von Rollenkonzepten
 - Zusammenarbeit verschiedener fachlicher Disziplinen notwendig.
 - Die Mitarbeiter arbeiten nicht zwangsweise in der gleichen Behörde
- UIS bisher
 - Prozess-Experten der UIS arbeiten mit Softwareentwicklern der bestehenden Systeme zusammen
- UIS neu
 - Neu benötigt werden ML-Experten
 - Abstimmung mit Prozess-Experten und Softwareentwicklern notwendig
 - Für einheitliche Regeln Abstimmung der KI-Algorithmen in übergeordneten Gremien notwendig

Mapping des ML4P Modells auf behördliche UIS

Phasen

Phase 1: Analyse und Zielsetzung

Phase 2: Proof of Concept

Phase 3: Systemspezifikation

Phase 4: Umsetzung und Inbetriebnahme

Phase 5: Übergabe

Phase 6: Betrieb

Hauptbeteiligte der Phase

Projektsponsor / Prozess-Experten (PE)

PE

PE / Software-Entwickler

PE / Software-Entwickler

PE, IT-Sicherheit

Prozessbediener / PE / Software-Entwickler / IT-Sicherheit

Mapping des ML4P Modells auf behördliche UIS

Phasen

Phase 1: Analyse und Zielsetzung

Phase 2: Proof of Concept

Phase 3: Systemspezifikation

Phase 4: Umsetzung und Inbetriebnahme

Phase 5: Übergabe

Phase 6: Betrieb

Hauptbeteiligte der Phase

Projektsponsor / Prozess-Experten (PE) / ML Experten (MLE)

PE / MLE (Zusammensetzung des Gremiums überarbeiten)

PE / MLE / Software-Entwickler

PE / MLE / Software-Entwickler

PE, IT-Sicherheit

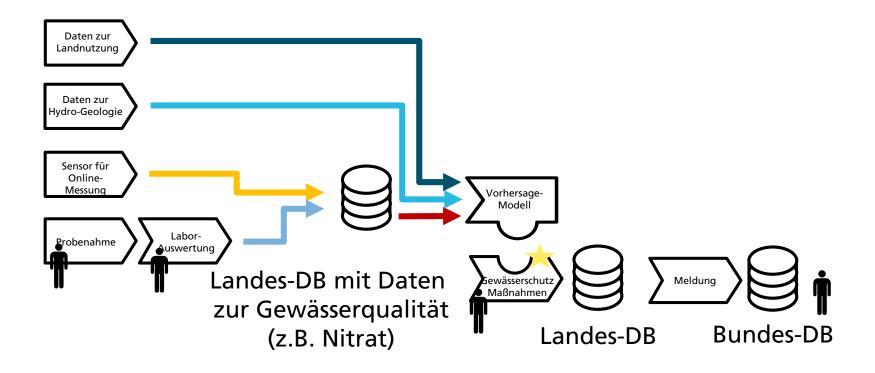
Prozessbediener / PE / MLE /
Software-Entwickler / IT-Sicherheit

Beteiligte Verwaltungseinheit der Phase

Behörde des Projektsponsors

Lawa und Test-Bundesländer mit repräsentativen UIS

Entwicklungs-Behörden aller Länder (Landesbehörden)


Entwicklungs-Behörden aller Länder

Zugehörige Rechenzentren aller Länder

Landesbehörden, untergeordnete Behörden und Rechenzentren

Beispiel für eine Maschine Learning Pipeline

- Dient in allen Phase als gemeinsame Kommunikationsgrundlage
- Verfeinerung beim Durchlauf der Phasen (Integration der KI-Methoden)

Ausblick

- IOSB ist beteiligt im Projekt NiMo siehe Vortrag um 11:45 Uhr in diesem Workshop
 - Möglichkeit zum Test des Vorgehensmodells in einem interdisziplinärem Forschungsprojekt mit verschiedenen Partnern
 - Aus dem ML4P Vorgehensmodell kann ein Maschine Learning for Environment Vorgehensmodell (ML4E) abgeleitet werden